Determination of a low-level percent enantiomer of a compound with no ultraviolet chromophore using vibrational circular dichroism (VCD): enantiomeric purity by VCD of a compound with three chiral centers

Appl Spectrosc. 2014;68(10):1108-15. doi: 10.1366/13-07112. Epub 2014 Oct 1.

Abstract

The chiral configuration of three of the four chiral centers in the investigational drug MLN4924 is locked by an intermediate (1S,2S,4R)-4-amino-2-(hydroxymethyl)cyclopentanol (designated as INT1a). The intermediate INT1a is a key component to the molecule, but its multiple chiral centers and lack of chromophore make it challenging to analyze for chiral purity of the desired enantiomer when it is contaminated with a small amount of its undesired enantiomer. Vibrational circular dichroism (VCD) is a technique that uses the infrared (IR) regions of the electromagnetic spectrum and as INT1a contains IR active groups, we considered using VCD to determine the chiral purity of INT1a. Since the VCD spectra of enantiomers are of equal intensity and opposite in sign, it was possible to construct calibration curves to detect the presence of low levels of this compound in the presence of its enantiomer. By normalizing the observed intensities of the VCD signals with the observed IR spectra, a partial least squares model was constructed having a root mean squared error of cross validation of 0.46% absolute over a range of 97 to 99.9% pure enantiomer (or 97-99.8% enantiomeric excess). This work demonstrates that VCD can be used for the low-level detection of a compound in the presence of its enantiomer and thus eliminates the need for an ultraviolet chromophore and chromatographic separation of the two enantiomers.

MeSH terms

  • Bicyclic Monoterpenes
  • Circular Dichroism / methods*
  • Least-Squares Analysis
  • Models, Chemical*
  • Molecular Conformation*
  • Monoterpenes / analysis
  • Monoterpenes / chemistry*
  • Stereoisomerism
  • Vibration

Substances

  • Bicyclic Monoterpenes
  • Monoterpenes
  • alpha-pinene