Cajaninstilbene acid prevents corticosterone-induced apoptosis in PC12 cells by inhibiting the mitochondrial apoptotic pathway

Cell Physiol Biochem. 2014;34(3):1015-26. doi: 10.1159/000366317. Epub 2014 Sep 1.

Abstract

Background/aims: Cajaninstilbene acid (3-hydroxy-4-prenyl-5-methoxystilben-2 -carboxylic acid, CSA), a natural stilbene isolated from the leaves of Cajanus cajan, has attracted considerable attention for its wide range of pharmacological activities. This study investigated whether CSA protects against corticosterone (CORT)-induced injury in PC12 cells and examined the potential mechanisms underlying this protective effect.

Methods: Cell viability and cytotoxicity were detected using a 3-(4,5-desethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay kit, respectively. PC12 cell apoptosis was measured using Hoechst 33342 staining and a DNA fragmentation assay kit, and intracellular Ca(2+) concentrations were assessed by fluorescent labelling. Next, the mitochondrial permeability transition pores (mPTPs) and mitochondrial membrane potentials (∆Ψm) were detected using a colorimetric mPTP detection kit and a 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) kit, respectively. Finally, cytochrome c, caspase-3 and inhibitor of caspase-activated deoxyribonuclease (ICAD) expression levels were monitored by western blot analysis.

Results: Treatment with 100 µmol/l CORT induced cytotoxicity in PC12 cells. However, CSA dose-dependently increased cell viability and decreased LDH release as well as CORT-induced apoptosis. Mechanistically, compared with the CORT-treated group, CSA strongly attenuated intracellular Ca(2+) overload and restored mitochondrial functions, including mPTPs and ∆Ψm. Furthermore, the down-regulation of cytochrome c and ICAD protein expression and the blockage of caspase-3 activity were observed upon CSA treatment.

Conclusions: In summary, our data are the first to show that the in vitro antidepressant-like effect of CSA may be attributed to the cytoprotection of neurons and that such neuroprotective mechanisms are correlated with intracellular Ca(2+) homeostasis and mitochondrial apoptotic pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Corticosterone / antagonists & inhibitors*
  • Corticosterone / pharmacology
  • DNA Fragmentation / drug effects
  • Mitochondria / drug effects*
  • PC12 Cells
  • Rats
  • Salicylates / pharmacology*
  • Stilbenes / pharmacology*

Substances

  • 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid
  • Salicylates
  • Stilbenes
  • Corticosterone