In the current study, for the first time, we found that metastasis-associated gene 1 (MTA1) was a higher-order chromatin structure organizer that decondenses the interphase chromatin and mitotic chromosomes. MTA1 interacts dynamically with nucleosomes during the cell cycle progression, prominently contributing to the mitotic chromatin/chromosome structure transitions at both prophase and telophase. We showed that the decondensation of interphase chromatin by MTA1 was independent of Mi-2 chromatin remodeling activity. H1 was reported to stabilize the compact higher-order chromatin structure through its interaction with DNA. Our data showed that MTA1 caused a reduced H1-chromatin interaction in-vivo. Moreover, the dynamic MTA1-chromatin interaction in the cell cycle contributed to the periodical H1-chromatin interaction, which in turn modulated chromatin/chromosome transitions. Although MTA1 drove a global decondensation of chromatin structure, it changed the expression of only a small proportion of genes. After MTA1 overexpression, the up-regulated genes were distributed in clusters along with down-regulated genes on chromosomes at parallel frequencies.
Keywords: Chromatin; Histone H1; MTA1; Nucleosome remodeling and histone deacetylation complex (NuRD); in-vivo.
Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.