Small molecules that restore the expression of growth-inhibitory microRNAs (miRNA) downregulated in tumors may have potential as anticancer agents. miR34a functions as a tumor suppressor and is downregulated or silenced commonly in a variety of human cancers, including hepatocellular carcinoma (HCC). In this study, we used an HCC cell-based miR34a luciferase reporter system to screen for miR34a modulators that could exert anticancer activity. One compound identified as a lead candidate, termed Rubone, was identified through its ability to specifically upregulate miR34a in HCC cells. Rubone activated miR34a expression in HCC cells with wild-type or mutated p53 but not in cells with p53 deletions. Notably, Rubone lacked growth-inhibitory effects on nontumorigenic human hepatocytes. In a mouse xenograft model of HCC, Rubone dramatically inhibited tumor growth, exhibiting stronger anti-HCC activity than sorafenib both in vitro and in vivo. Mechanistic investigations showed that Rubone decreased expression of cyclin D1, Bcl-2, and other miR34a target genes and that it enhanced the occupancy of p53 on the miR34a promoter. Taken together, our results offer a preclinical proof of concept for Rubone as a lead candidate for further investigation as a new class of HCC therapeutic based on restoration of miR34a tumor-suppressor function.
©2014 American Association for Cancer Research.