Generation and structural characterization of aluminum cyanoacetylide

J Chem Phys. 2014 Sep 14;141(10):104305. doi: 10.1063/1.4894501.

Abstract

Combined spectroscopy measurements and theoretical calculations bring to light a first investigation of a metallic cyanoacetylide, AlC3N, using laser ablation molecular beam Fourier transform microwave spectroscopy. This molecule was synthesized in a supersonic expansion by the reaction of aluminum vapour with C3N, produced from solid aluminum rods and BrCCCN in a newly constructed ablation-heating nozzle device. A set of accurate rotational and (27)Al and (14)N nuclear quadrupole coupling constants have been determined from the analysis of the rotational spectrum and compared with those predicted in a high-level ab initio study, conducting to the assignment of the observed species to linear AlCCCN. We have searched for this species towards the carbon-rich evolved star IRC + 10216 but only an upper limit to its abundance has been obtained.