Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems

Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11822-7. doi: 10.1002/anie.201406764. Epub 2014 Sep 12.

Abstract

siRNA delivery remains a major challenge in RNAi-based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self-assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphiphilic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer-based adaptive supramolecular assemblies represent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer-based self-assembled drug delivery in biomedical applications.

Keywords: dendrimers; gene silencing; nanocarriers; nonviral vectors; self-assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dendrimers / chemistry*
  • Gene Silencing / immunology*
  • Humans
  • RNA, Small Interfering / immunology*

Substances

  • Dendrimers
  • RNA, Small Interfering