Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers?

ACS Chem Neurosci. 2014 Dec 17;5(12):1154-63. doi: 10.1021/cn500073j. Epub 2014 Oct 13.

Abstract

Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature. The PET tracers studied included those reported to label G protein-coupled receptors (GPCRs), intracellular enzymes, and transporters. Additionally, data for each tracer was obtained from a mouse brain uptake assay (MBUA), previously published, where blood-brain barrier (BBB) penetration and clearance parameters were assessed and compared against similar data collected on a broad compound set of central nervous system (CNS) therapeutic compounds. The BP and SUV identified via nonradiolabeled LC-MS/MS, while different from the published values observed in the literature PET tracer data, allowed for an identification of initial criteria values we sought to facilitate increased potential for success from our early discovery screening paradigm. Our analysis showed that successful, as well as novel, clinical PET tracers exhibited BP of greater than 1.5 and peak SUVs greater than approximately 150% at 5 min post dose in rodents. The brain kinetics appeared similar between both techniques despite differences in tracer dose, suggesting linearity across these dose ranges. The assessment of tracers in a CNS exposure model, the mouse brain uptake assessment (MBUA), showed that those compound with initial brain-to-plasma ratios >2 and unbound fraction in brain homogenate >0.01 were more likely to be clinically successful PET ligands. Taken together, early incorporation of a LC/MS/MS cold tracer discovery assay and a parallel MBUA can be an useful screening paradigm to prioritize and rank order potential novel PET radioligands during early tracer discovery efforts. Compounds considered for continued in vivo PET assessments can be identified quickly by leveraging in vitro affinity and selectivity measures, coupled with data from a MBUA, primarily the 5 min brain-to-plasma ratio and unbound fraction data. Coupled utilization of these data creates a strategy to efficiently screen for the identification of appropriate chemical space to invest in for radiotracer discovery.

Keywords: Positron emission tomography (PET); biomarker; imaging; in vivo; mass spectrometry; preclinical translation; rat.

Publication types

  • Review

MeSH terms

  • Animals
  • Biomarkers / analysis
  • Biomarkers / chemistry
  • Brain / diagnostic imaging*
  • Chromatography, Liquid
  • Humans
  • Mice
  • Positron-Emission Tomography*
  • Radiopharmaceuticals / chemistry*
  • Rats
  • Tandem Mass Spectrometry*

Substances

  • Biomarkers
  • Radiopharmaceuticals