Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review

Brain Res. 2015 Sep 4:1619:139-54. doi: 10.1016/j.brainres.2014.09.036. Epub 2014 Sep 22.

Abstract

We performed here a systematic review of the studies using transcranial magnetic stimulation (TMS) as a research and clinical tool in patients with spinal cord injury (SCI). Motor evoked potentials (MEPs) elicited by TMS represent a highly accurate diagnostic test that can supplement clinical examination and neuroimaging findings in the assessment of SCI functional level. MEPs allows to monitor the changes in motor function and evaluate the effects of the different therapeutic approaches. Moreover, TMS represents a useful non-invasive approach for studying cortical physiology, and may be helpful in elucidating the pathophysiological mechanisms of brain reorganization after SCI. Measures of motor cortex reactivity, e.g., the short interval intracortical inhibition and the cortical silent period, seem to point to an increased cortical excitability. However, the results of TMS studies are sometimes contradictory or divergent, and should be replicated in a larger sample of subjects. Understanding the functional changes at brain level and defining their effects on clinical outcome is of crucial importance for development of evidence-based rehabilitation therapy. TMS techniques may help in identifying neurophysiological biomarkers that can reliably assess the extent of neural damage, elucidate the mechanisms of neural repair, predict clinical outcome, and identify therapeutic targets. Some researchers have begun to therapeutically use repetitive TMS (rTMS) in patients with SCI. Initial studies revealed that rTMS can induce acute and short duration beneficial effects especially on spasticity and neuropathic pain, but the evidence is to date still very preliminary and well-designed clinical trials are warranted. This article is part of a Special Issue entitled SI: Spinal cord injury.

Keywords: Central motor conduction; Intracortical inhibition; Motor evoked potentials; Repetitive transcranial magnetic stimulation; Spinal cord injury; Therapeutic applications; Transcranial magnetic stimulation.

Publication types

  • Review
  • Systematic Review

MeSH terms

  • Animals
  • Evoked Potentials, Motor
  • Humans
  • Motor Activity
  • Motor Cortex / physiopathology*
  • Muscle Spasticity / complications
  • Muscle Spasticity / therapy
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiopathology
  • Neuralgia / complications
  • Neuralgia / therapy
  • Psychomotor Disorders / complications
  • Psychomotor Disorders / therapy
  • Pyramidal Tracts / physiopathology*
  • Recovery of Function
  • Spinal Cord Injuries / complications
  • Spinal Cord Injuries / diagnosis*
  • Spinal Cord Injuries / physiopathology*
  • Spinal Cord Injuries / therapy
  • Transcranial Magnetic Stimulation*