Subcutaneous fat and marbling both increase in beef cattle during the feeding phase but are antagonistic in regard to their contribution to beef carcass value. The objective of this study was to determine whether cellular factors associated with marbling development change with growth stage throughout the feeding period and whether they are correlated to marbling relative to carcass composition. Twenty-four steers of known origin with the cytosine and thymine (CT) leptin genotype were allotted to 3 harvest groups. Six steers per harvest group were harvested at the following predetermined points: 35 d on feed (early feeding period, EF), average live weight of 464 kg (middle feeding period, MF), and 1.17-cm 12th-rib subcutaneous fat thickness (late feeding period, LF). Longissmus muscle samples were collected within 30 min postmortem and snap frozen for real-time PCR and Western blot analysis of lipoprotein lipase, adenosine monophosphate-activated protein kinase α (AMPKα), stearoyl-coenzyme A desaturase (SCD), PPARγ, C/EBP-β, and myostatin. Carcass data were recorded, and LM samples were collected and aged 2, 7, 14, and 21 d postmortem for Warner-Bratzler shear force determination. Carcass composition was estimated by dissection of the 9-10-11 rib section and subsequent proximate analysis of the soft tissue. Intramuscular fat content of the LM increased linearly throughout the feeding period, giving additional support to marbling as an early developing tissue. Expression of AMPKα was found to be downregulated, whereas SCD expression was upregulated in the LF group relative to the first 2 harvest groups. Additionally, SCD and PPARγ were downregulated in the EF group relative to the latter 2 harvest groups. These changes in gene expression resulted in a linear increase in only PPARγ protein abundance, whereas myostatin tended to increase quadratically. A correlation was found between intramuscular fat and PPARγ abundance. This gives further evidence of the importance of adipocyte hyperplasia in increasing marbling. Targeting and increasing PPARγ expression may serve as a mechanism to increase marbling deposition. Last, LF steaks were more tender than MF or EF steaks, indicating improved tenderness with increased days on feed.
Keywords: beef; fat; growth; marbling.