Introduction: Intensive laboratory, preclinical and clinical studies have identified and validated molecular targets in cancers, leading to a shift toward the development of novel, rationally designed and specific therapeutic agents. However, gastrointestinal cancers continue to have a poor prognosis, largely due to drug resistance.
Areas covered: Here, we discuss the current understanding of DNA synthesis inhibitors and their mechanisms of action for the treatment of gastrointestinal malignancies.
Expert opinion: Conventional agents, including DNA synthesis inhibitors such as fluoropyrimidines and platinum analogs, remain the most effective therapeutics and are the standards against which new drugs are compared. Novel DNA synthesis inhibitors for the treatment of gastrointestinal malignancies include a combination of the antimetabolite TAS-102, which consists of trifluorothymidine with a thymidine phosphorylase inhibitor, and a novel micellar formulation of cisplatin NC-6004 that uses a nanotechnology-based drug delivery system. The challenges of translational cancer research using DNA synthesis inhibitors include the identification of drugs that are specific to tumor cells to reduce toxicity and increase antitumor efficacy, biomarkers to predict pharmacological responses to chemotherapeutic drugs, identification of ways to overcome drug resistance and development of novel combination therapies with DNA synthesis inhibitors and other cancer therapies, such as targeted molecular therapeutics. Here, we discuss the current understanding of DNA synthesis inhibitors and their mechanisms of action for the treatment of gastrointestinal malignancies.
Keywords: DNA synthesis inhibitor; antimetabolite; drug delivery system; drug resistance; platinum analogs; translational cancer research.