The validation of cardiovascular risk scores for patients with type 2 diabetes mellitus

Heart. 2015 Feb;101(3):222-9. doi: 10.1136/heartjnl-2014-306068. Epub 2014 Sep 25.

Abstract

Objective: Various cardiovascular prediction models have been developed for patients with type 2 diabetes. Their predictive performance in new patients is mostly not investigated. This study aims to quantify the predictive performance of all cardiovascular prediction models developed specifically for diabetes patients.

Design and methods: Follow-up data of 453, 1174 and 584 type 2 diabetes patients without pre-existing cardiovascular disease (CVD) in the EPIC-NL, EPIC-Potsdam and Secondary Manifestations of ARTerial disease cohorts, respectively, were used to validate 10 prediction models to estimate risk of CVD or coronary heart disease (CHD). Discrimination was assessed by the c-statistic for time-to-event data. Calibration was assessed by calibration plots, the Hosmer-Lemeshow goodness-of-fit statistic and expected to observed ratios.

Results: There was a large variation in performance of CVD and CHD scores between different cohorts. Discrimination was moderate for all 10 prediction models, with c-statistics ranging from 0.54 (95% CI 0.46 to 0.63) to 0.76 (95% CI 0.67 to 0.84). Calibration of the original models was poor. After simple recalibration to the disease incidence of the target populations, predicted and observed risks were close. Expected to observed ratios of the recalibrated models ranged from 1.06 (95% CI 0.81 to 1.40) to 1.55 (95% CI 0.95 to 2.54), mainly driven by an overestimation of risk in high-risk patients.

Conclusions: All 10 evaluated models had a comparable and moderate discriminative ability. The recalibrated, but not the original, prediction models provided accurate risk estimates. These models can assist clinicians in identifying type 2 diabetes patients who are at low or high risk of developing CVD.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cardiovascular Diseases / epidemiology
  • Cardiovascular Diseases / etiology*
  • Diabetes Mellitus, Type 2 / complications*
  • Global Health
  • Humans
  • Models, Cardiovascular*
  • Risk Assessment*
  • Risk Factors