The receptor for advanced glycation end products (RAGE)-mediated signaling pathway is related to Aβ-induced pathogenic responses. Geniposide, a pharmacologically active component purified from gardenia fruit, could attenuate the oligomeric Aβ(1-42)-induced inflammatory response by blocking the ligation of Aβ to RAGE and suppressing the RAGE-mediated signaling in vitro. Here, we investigated whether geniposide can exert protective effects on the neuroinflammation and memory deficits in an Alzheimer's disease (AD) mouse model. The results indicate that geniposide treatment significantly suppresses RAGE-dependent signaling (activation of ERK and IκB/NF-κB), the production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and cerebral Aβ accumulation in vivo. Furthermore, we demonstrate that geniposide augments synaptic plasticity by attenuating the Aβ-induced reduction of long-term potentiation and increasing the miniature excitatory postsynaptic current (mEPSC) amplitude and frequency in hippocampal neurons. In addition, the intragastric administration of geniposide improves learning and memory in APP/PS1 mice. Taken together, these studies indicate that geniposide has profound multifaceted neuroprotective effects in an AD mouse model. Geniposide demonstrates its neuroprotection by inhibiting inflammation, ameliorating amyloid pathology and improving cognition. Thus, geniposide may be a potential therapeutic agent for halting and preventing AD progression.
Keywords: APP/PS1 transgenic mice; Alzheimer's disease; Amyloid-β; Geniposide; Receptor for advanced glycation end products.
Copyright © 2014 Elsevier Ltd. All rights reserved.