Background: To investigate the association between subarachnoid hemorrhage-induced delayed cerebral vasospasm (DCVS) and oxidative stress, an oxidation product, hydroperoxide, was measured in 3 specimens: peripheral arterial blood, cerebrospinal fluid (CSF), and internal jugular venous blood (IJVB).
Methods: Hydroperoxide was measured using the diacron reactive oxygen metabolites (d-ROMs) test. The hydroperoxide levels were evaluated based on the rate of change in the d-ROMs test value on day 6 relative with that on day 3 (d-ROMs change rate).
Results: The subjects were 20 patients. The d-ROMs change rate in IJVB was significantly higher in patients with DCVS on day 6 than in those without it (P < .01). When the patients were classified into the following 3 groups: Group A (no DCVS occurred throughout the clinical course); Group B (DCVS occurred, but no cerebral infarction [CI] was induced); and Group C (DCVS occurred and caused CI), the d-ROMs change rate in IJVB was the highest in Group C, followed by Group B then A (P < .01). The d-ROMs change rates in peripheral arterial blood and CSF were not related to the development of DCVS.
Conclusions: It was concluded that the more severe DCVS occurs and is more likely to progress to CI as the IJVB hydroperoxide level rises early after the development of subarachnoid hemorrhage.
Keywords: Hydroperoxide; delayed cerebral vasospasm; internal jugular venous blood; oxidative stress; subarachnoid hemorrhage.
Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.