Background: The prognosis of glioma patients is contingent on precise target selection for stereotactic biopsies and the extent of tumor resection. (11)C-L-methionine (MET) positron emission tomography (PET) demonstrates tumor heterogeneity and invasion with high diagnostic accuracy.
Purpose: To compare the spatial tumor distribution delineated by MET PET with that by perfusion- and diffusion-weighted magnetic resonance imaging (MRI), in order to understand the diagnostic value of these MRI methods, when PET is not available.
Material and methods: Presurgical MET PET and MRI, including perfusion- and diffusion-weighted MRI, were acquired in 13 patients (7 high-grade gliomas, 6 low-grade gliomas). A quantitative volume of interest analysis was performed to compare the modalities objectively, supplemented by a qualitative evaluation that assessed the clinical applicability.
Results: The inaccuracy of conventional MRI was confirmed (area under the curve for predicting voxels with high MET uptake = 0.657), whereas cerebral blood volume (CBV) maps calculated from perfusion data improved accuracy (area under the curve = 0.760). We considered CBV maps diagnostically comparable to MET PET in 5/7 cases of high-grade gliomas, but insufficient in all cases of low-grade gliomas when evaluated subjectively. Cerebral blood flow and apparent diffusion coefficient maps did not contribute to further accuracy.
Conclusion: Adding perfusion-weighted MRI to the presurgical protocol can increase the diagnostic accuracy of conventional MRI and is a simple and well-established method compared to MET PET. However, the definition of low-grade gliomas with subtle or no alterations on cerebral blood volume maps remains a diagnostic challenge for stand-alone MRI.
Keywords: CNS; PET; brain/brain stem; comparative study; perfusion- and diffusion-weighted magnetic resonance imaging; primary neoplasms.
© The Foundation Acta Radiologica 2014.