We consider the role of potential scatterers in the nematic phase of Fe-based superconductors above the transition temperature to the (π, 0) magnetic state but below the orthorhombic structural transition. The anisotropic spin fluctuations in this region can be frozen by disorder, to create elongated magnetic droplets whose anisotropy grows as the magnetic transition is approached. Such states act as strong anisotropic defect potentials that scatter with much higher probability perpendicular to their length than parallel, although the actual crystal symmetry breaking is tiny. We calculate the scattering potentials, relaxation rates, and conductivity in this region and show that such emergent defect states are essential for the transport anisotropy observed in experiments.