Tensile strain increased COX-2 expression and PGE2 release leading to weakening of the human amniotic membrane

Placenta. 2014 Dec;35(12):1057-64. doi: 10.1016/j.placenta.2014.09.006. Epub 2014 Sep 19.

Abstract

Introduction: There is evidence that premature rupture of the fetal membrane at term/preterm is a result of stretch and tissue weakening due to enhanced prostaglandin E2 (PGE2) production. However, the effect of tensile strain on inflammatory mediators and the stretch sensitive protein connexin-43 (Cx43) has not been examined. We determined whether the inflammatory environment influenced tissue composition and response of the tissue to tensile strain.

Methods: Human amniotic membranes isolated from the cervix (CAM) or placenta regions (PAM) were examined by second harmonic generation to identify collagen orientation and subjected to tensile testing to failure. In separate experiments, specimens were subjected to cyclic tensile strain (2%, 1 Hz) for 24 h. Specimens were examined for Cx43 by immunofluorescence confocal microscopy and expression of COX-2 and Cx43 by RT-qPCR. PGE2, collagen, elastin and glycosaminoglycan (GAG) levels were analysed by biochemical assay.

Results: Values for tensile strength were significantly higher in PAM than CAM with mechanical parameters dependent on collagen orientation. Gene expression for Cx43 and COX-2 was enhanced by tensile strain leading to increased PGE2 release and GAG levels in PAM and CAM when compared to unstrained controls. In contrast, collagen and elastin content was reduced by tensile strain in PAM and CAM.

Discussion: Fibre orientation has a significant effect on amniotic strength. Tensile strain increased Cx43/COX-2 expression and PGE2 release resulting in tissue softening mediated by enhanced GAG levels and a reduction in collagen/elastin content.

Conclusion: A combination of inflammatory and mechanical factors may disrupt amniotic membrane biomechanics and matrix composition.

Keywords: Amniotic membrane; Collagen; Connexin 43; Preterm labour; Preterm premature rupture of the membrane; Prostaglandin E(2); Tensile strain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amnion / metabolism*
  • Connexin 43 / genetics
  • Connexin 43 / metabolism*
  • Cyclooxygenase 2 / genetics
  • Cyclooxygenase 2 / metabolism*
  • Dinoprostone / metabolism*
  • Female
  • Fetal Membranes, Premature Rupture / metabolism*
  • Humans
  • Pregnancy
  • Stress, Mechanical
  • Tensile Strength / physiology*

Substances

  • Connexin 43
  • Cyclooxygenase 2
  • Dinoprostone