Alzheimer disease (AD) is a progressive neurodegenerative disease leading to memory loss. Numerous lines of evidence suggest that amyloid-β (Aβ), a neurotoxic peptide, initiates a cascade that results in synaptic dysfunction, neuronal death, and eventually cognitive deficits. Aβ is generated by the proteolytic processing of the amyloid precursor protein (APP), and alterations to this processing can result in Alzheimer disease. Using in vitro and in vivo models, we identified cyclopamine as a novel regulator of γ-secretase-mediated cleavage of APP. We demonstrate that cyclopamine decreases Aβ generation by altering APP retrograde trafficking. Specifically, cyclopamine treatment reduced APP-C-terminal fragment (CTF) delivery to the trans-Golgi network where γ-secretase cleavage occurs. Instead, cyclopamine redirects APP-CTFs to the lysosome. These data demonstrate that cyclopamine treatment decreases γ-secretase-mediated cleavage of APP. In addition, cyclopamine treatment decreases the rate of APP-CTF degradation. Together, our data demonstrate that cyclopamine alters APP processing and Aβ generation by inducing changes in APP subcellular trafficking and APP-CTF degradation.
Keywords: Alzheimer Disease; Amyloid Precursor Protein (APP); Amyloid-β (Aβ); Intracellular Trafficking; Lysosome; Sterol; γ-Secretase.
© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.