Recent findings have shown that antibiotic resistance is widespread in multiple environments and multicellular organisms, as plants, harboring rich and complex bacterial communities, could be hot spot for emergence of antibiotic resistances as a response to bioactive molecules production by members of the same community. Here, we investigated a panel of 137 bacterial isolates present in different organs of the medicinal plant Echinacea purpurea, aiming to evaluate if different plant organs harbor strains with different antibiotic resistance profiles, implying then the presence of different biological interactions in the communities inhabiting different plant organs. Data obtained showed a large antibiotic resistance variability among strains, which was strongly related to the different plant organs (26% of total variance, P < 0.0001). Interestingly this uneven antibiotic resistance pattern was present also when a single genus (Pseudomonas), ubiquitous in all organs, was analyzed and no correlation of antibiotic resistance pattern with genomic relatedness among strains was found. In conclusion, we speculate that antibiotic resistance patterns are tightly linked to the type of plant organ under investigation, suggesting the presence of differential forms of biological interaction in stem/leaves, roots and rhizosphere.
Keywords: Antibiotic resistance; Endophytes; Medicinal plants; Pseudomonas.
Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.