Staphylococcal and streptococcal species are the most common pathogens that cause bovine mastitis. Induction of a broad-spectrum protective immunity against staphylococci and streptococci by combining multiple antigens into a single vaccine is highlighted. To develop a universal vaccine candidate, a GapC1-tIsdB-TRAP (GIT) construct was generated. The GIT contained the truncated GapC from Streptococcus dysgalactiae, and truncated IsdB and full-length TRAP from Staphylococcus aureus. The humoral and cellular immune responses elicited by GIT were evaluated in mice. Antibody levels against GIT displayed a consistent tendency with antibody levels against GapC, IsdB and TRAP. The level of IFN-γ was higher in the GIT group than in the IsdB group (P<0.05), and the level of IL-4 was higher in the GIT group than in the GapC or TRAP groups (P<0.05). The GIT group showed an improved protection against Streptococcus in comparison with GapC group. A significant difference in S. aureus challenge test was detected between the GIT group and the IsdB or TRAP groups (P<0.05) in per cent survival of mice, and a synergistic immunoprotection against S. aureus or S. dysgalactiae was produced in the GIT group. These results suggested that the GIT would be a promising common vaccine candidate against S. aureus and Streptococcus.
© 2014 The Authors.