The disproportionation of elemental sulfur at moderate temperatures is investigated in the redox condensation involving o-halonitrobenzenes 1 and benzylamines 2. As a redox moderator, elemental sulfur plays the dual role of both electron donor and acceptor, generating its lowest and highest oxidation states: S(-2) (sulfide equivalent) in benzothiazole 3 and S(+6) (sulfate equivalent) in sulfamate 4, and filling the electron gap of the global redox condensation process. Along with this process, a cascade of reactions of reduction of the nitro group of 1, oxidation of the aminomethyl group of 2, metal-free aromatic halogen substitution, and condensation finally led to 2-arylbenzothiazoles 3.
Keywords: benzothiazoles; multicomponent reactions; redox condensation; sulfur; sulfur disproportionation.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.