Are Females More Resistant to Extreme Neuromuscular Fatigue?

Med Sci Sports Exerc. 2015 Jul;47(7):1372-82. doi: 10.1249/MSS.0000000000000540.

Abstract

Purpose: Despite interest in the possibility of females outperforming males in ultraendurance sporting events, little is known about the sex differences in fatigue during prolonged locomotor exercise. This study investigated possible sex differences in central and peripheral fatigue in the knee extensors and plantar flexors resulting from a 110-km ultra-trail-running race.

Methods: Neuromuscular function of the knee extensors and plantar flexors was evaluated via transcranial magnetic stimulation (TMS) and electrical nerve stimulation before and after an ultra-trail-running race in 20 experienced ultraendurance trail runners (10 females and 10 males matched by percent of the winning time by sex) during maximal and submaximal voluntary contractions and in relaxed muscle.

Results: Maximal voluntary knee extensor torque decreased more in males than in females (-38% vs -29%, P = 0.006) although the reduction in plantar flexor torque was similar between sexes (-26% vs -31%). Evoked mechanical plantar flexor responses decreased more in males than in females (-23% vs -8% for potentiated twitch amplitude, P = 0.010), indicating greater plantar flexor peripheral fatigue in males. Maximal voluntary activation assessed by TMS and electrical nerve stimulation decreased similarly in both sexes for both muscle groups. Indices of knee extensor peripheral fatigue and corticospinal excitability and inhibition changes were also similar for both sexes.

Conclusions: Females exhibited less peripheral fatigue in the plantar flexors than males did after a 110-km ultra-trail-running race and males demonstrated a greater decrease in maximal force loss in the knee extensors. There were no differences in the magnitude of central fatigue for either muscle group or TMS-induced outcomes. The lower level of fatigue in the knee extensors and peripheral fatigue in the plantar flexors could partly explain the reports of better performance in females in extreme duration running races as race distance increases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Electric Stimulation
  • Evoked Potentials, Motor / physiology
  • Female
  • Humans
  • Lower Extremity / physiopathology
  • Male
  • Muscle Contraction / physiology
  • Muscle Fatigue / physiology*
  • Physical Endurance / physiology*
  • Running / physiology*
  • Sex Factors
  • Transcranial Magnetic Stimulation