The purpose of this work was to investigate the effect of a hepatocyte-specific gadolinium based contrast agent (GBCA) on quantitative hepatic fat-fraction (FF) and R2* measurements. Fifty patients were imaged at 1.5T, using chemical-shift encoded water-fat MRI with low (5°) and high (15°) flip angles (FA), both before and after administration of a hepatocyte-specific GBCA (gadoxetic acid). Low and high FA, pre- and post-contrast FF and R2* values were measured for each subject. Available serum laboratory studies related to liver disease were also recorded. Linear regression and Bland-Altman analysis were performed to compare measurements. Hepatic FF was unaffected by GBCA at low FA (slope=1.02±0.02, p=0.32). FF was overestimated at high FA pre-contrast (slope=1.33±0.03, p<10(-10)), but underestimated post-contrast (slope=0.81±0.02, p<10(-10)). Hepatic R2* was unaffected by FA (mean difference±95% CI pre-contrast:2.2±4.9s(-1), post-contrast:2.8±3.6s(-1)), but increased post-contrast in patients with total bilirubin <2.5mg/dL (ΔR2*=13.4±12.7s(-1)). Regression analysis of serum values demonstrated a correlation of post-contrast change in R2* with total bilirubin (p<0.01) and model for end-stage liver disease (MELD) score (p≈0.01). In conclusion, GBCA has no effect on hepatic FF at low FA due to a lack of T1-weighting, potentially allowing flexibility for FF imaging with hepatobiliary imaging protocols. Hepatic R2* increased significantly after GBCA administration, particularly in the biliary tree. Therefore, R2* maps should be obtained prior to contrast administration.
Keywords: Fat quantification; Fat-fraction; Fat–Water imaging; Gadoxetic acid; Iron quantification; R2*.
Copyright © 2014 Elsevier Inc. All rights reserved.