Reactions of nitrosoalkenes with dipyrromethanes and pyrroles: insight into the mechanistic pathway

J Org Chem. 2014 Nov 7;79(21):10456-65. doi: 10.1021/jo502095k. Epub 2014 Oct 21.

Abstract

The reactivity of nitrosoalkenes toward dipyrromethanes, pyrrole, and 2,5-dimethylpyrrole is described. 1-(p-Bromophenyl)nitrosoethylene shows a different chemical behavior with these heterocycles than the previously reported reactions of ethyl nitrosoacrylate, which proceeds via a Diels-Alder reaction. 1-(p-Bromophenyl)nitrosoethylene reacts with dipyrromethanes and pyrrole to afford two isomeric oximes via conjugate addition followed by rearomatization of the pyrrole unit. On the other hand, this nitrosoalkene reacts with 2,5-dimethylpyrrole through an initial conjugate addition followed by intramolecular O- and N-nucleophilic addition with the formation of the corresponding bicyclic oxazine and five-membered cyclic nitrone, respectively. Quantum chemical calculations, at the DFT level of theory, indicate that the barriers associated with the Diels-Alder reactions of ethyl nitrosoacrylate are over 30 kJ/mol lower than those that would be required for the cycloadditions of 1-(p-bromophenyl)nitrosoethylene. Thus, calculations predict that the Diels-Alder reaction is privileged in the case of ethyl nitrosoacrylate and point to a different reaction pathway for 1-(p-bromophenyl)nitrosoethylene, corroborating the experimental findings.