Geometrical characteristics of left ventricular dyssynchrony in advanced heart failure. Myocardial strain analysis by tagged MRI

Int Heart J. 2014;55(6):512-8. doi: 10.1536/ihj.14-137. Epub 2014 Oct 14.

Abstract

The aims of this study were to quantify the geometrical differences in left ventricular (LV) dyssynchrony in patients with heart failure (HF) using cine-tagged MRI, and to investigate the relationship between dyssynchrony and major adverse cardiac events (MACE) in HF.In 67 patients with HF [mean LV ejection fraction (LVEF), 34%], cardiac MRI using a 3-Tesla scanner was performed. The dyssynchrony time between septal and lateral segments (SL-DT) and between basal and apical segments (BA-DT) was computed by cross-correlation analysis of the strain time-curves from the cine-tagged MRI. After receiving optimal medical treatment, all patients were followed-up for a mean period of 27 months. The primary endpoint was MACE that consisted of cardiac death or HF hospitalization or a left ventricular assist device due to refractory pump failure. Multivariate logistic regression analysis was performed to determine the ability of SL-DT, BA-DT, and HF biomarkers to predict MACE.Multivariate logistic regression analysis showed that the odds ratio to predict MACE was 0.935 for LVEF (P = 0.021), 1.016 for BA-DT (P = 0.026), and 0.971 for systolic blood pressure (P = 0.126).The results show that basal-apical dyssynchrony is an independent predictor of MACE in HF patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Case-Control Studies
  • Female
  • Heart / physiopathology*
  • Heart Failure / complications
  • Heart Failure / physiopathology*
  • Humans
  • Magnetic Resonance Imaging, Cine*
  • Male
  • Middle Aged
  • Myocardium
  • Prospective Studies
  • Ventricular Dysfunction, Left*