MicroRNA-146a reduces IL-1 dependent inflammatory responses in the intervertebral disc

Gene. 2015 Jan 25;555(2):80-7. doi: 10.1016/j.gene.2014.10.024. Epub 2014 Oct 12.

Abstract

Because miR-146a expression in articular chondrocytes is associated with osteoarthritis (OA), we assessed whether miR-146a is linked to cartilage degeneration in the spine. Monolayer cultures of nucleus pulposus (NP) cells from the intervertebral discs (IVD) of bovine tails were transfected with a miR-146a mimic. To provoke inflammatory responses and catabolic extracellular matrix (ECM) degradation, cells were co-treated with interleukin-1 (IL-1). Transfection of miR-146a decreases IL-1 induced mRNA levels of inflammatory genes and catabolic proteases in NP cells based on quantitative real-time reverse transcriptase PCR (qRT-PCR) analysis. Similarly, miR146a suppresses IL-1 induced protein levels of matrix metalloproteinases and aggrecanases as revealed by immunoblotting. Disc segments from wild type (WT) and miR-146a knockout (KO) mice were cultured ex vivo in the presence or absence of IL-1 for 3days. Histological and immuno-histochemical (IHC) analyses of disc organ cultures revealed that IL-1 mediates changes in proteoglycan (PG) content and in-situ levels of catabolic proteins (MMP-13 and ADAMTS-5) in the nucleus pulposus of the disc. However, these IL-1 effects are more pronounced in miR-146a KO discs compared to WT discs. For example, absence of miR-146a increases the percentage of MMP-13 and ADAMTS-5 positive cells after treatment with IL-1. Thus, miR-146a appears to protect against IL-1 induced IVD degeneration and inflammation. Stimulation of endogenous miR-146a expression or exogenous delivery of miRNA-146a are viable therapeutic strategies that may decelerate disc degeneration and regain a normal homeostatic balance in extracellular matrix production and turn-over.

Keywords: ADAMTS-5; IL-1; Intervertebral disc degeneration; MMP-13; Nucleus pulposus; miR-146a.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • ADAM Proteins / metabolism
  • ADAMTS5 Protein
  • Animals
  • Cattle
  • Cells, Cultured
  • Extracellular Matrix / metabolism
  • Gene Expression Regulation*
  • Homeostasis
  • Immunohistochemistry
  • In Vitro Techniques
  • Inflammation / metabolism*
  • Interleukin-1 / pharmacology*
  • Intervertebral Disc / metabolism*
  • Intervertebral Disc Degeneration / metabolism*
  • Matrix Metalloproteinase 13 / metabolism
  • Mice
  • Mice, Knockout
  • MicroRNAs / metabolism*
  • Proteoglycans / metabolism
  • Transfection

Substances

  • Interleukin-1
  • MicroRNAs
  • Mirn146 microRNA, mouse
  • Proteoglycans
  • ADAM Proteins
  • ADAMTS5 Protein
  • Adamts5 protein, mouse
  • Matrix Metalloproteinase 13
  • Mmp13 protein, mouse