Antigen-specific multifunctional T cells that secrete interferon-γ, interleukin-2 and tumour necrosis factor-α simultaneously after activation are important for the control of many infections. It is unclear if these CD8(+) T cells are at an early or late stage of differentiation and whether telomere erosion restricts their replicative capacity. We developed a multi-parameter flow cytometric method for investigating the relationship between differentiation (CD45RA and CD27 surface phenotype), function (cytokine production) and replicative capacity (telomere length) in individual cytomegalovirus (CMV) antigen-specific CD8(+) T cells. This involves surface and intracellular cell staining coupled to fluorescence in situ hybridization to detect telomeres (flow-FISH). The end-stage/senescent CD8(+) CD45RA(+) CD27(-) T-cell subset increases significantly during ageing and this is exaggerated in CMV immune-responsive subjects. However, these end-stage cells do not have the shortest telomeres, implicating additional non-telomere-related mechanisms in inducing their senescence. The telomere lengths in total and CMV (NLV)-specific CD8(+) T cells in all four subsets defined by CD45RA and CD27 expression were significantly shorter in old compared with young individuals in both a Caucasian and an Asian cohort. Following stimulation by anti-CD3 or NLV peptide, similar proportions of triple-cytokine-producing cells are found in CD8(+) T cells at all stages of differentiation in both age groups. Furthermore, these multi-functional cells had intermediate telomere lengths compared with cells producing only one or two cytokines after activation. Therefore, global and CMV (NLV)-specific CD8(+) T cells that secrete interferon-γ, interleukin-2 and tumour necrosis factor-α are at an intermediate stage of differentiation and are not restricted by excessive telomere erosion.
Keywords: CD8+ T cells; cytomegalovirus; multi-functional; senescence; telomere.
© 2014 The Authors. Immunology published by John Wiley & Sons Ltd.