Modeling multiphase flow using fluctuating hydrodynamics

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):033014. doi: 10.1103/PhysRevE.90.033014. Epub 2014 Sep 26.

Abstract

Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Gases
  • Hydrodynamics*
  • Models, Statistical*
  • Phase Transition
  • Pressure
  • Stochastic Processes
  • Surface Properties
  • Temperature
  • Viscosity

Substances

  • Gases