Objectives: To determine whether a selective increase of visceral adipose tissue content will result in insulin resistance.
Methods: Sympathetic denervation of the omental fat was performed under general inhalant anesthesia by injecting 6-hydroxydopamine in the omental fat of lean mongrel dogs (n = 11). In the conscious animal, whole-body insulin sensitivity was assessed by the minimal model (SI ) and the euglycemic hyperinsulinemic clamp (SICLAMP ). Changes in abdominal fat were monitored by magnetic resonance. All assessments were determined before (Wk0) and 2 weeks (Wk2) after denervation. Data are medians (upper and lower interquartile).
Results: Denervation of omental fat resulted in increased percentage (and content) of visceral fat [Wk0: 10.2% (8.5-11.4); Wk2: 12.4% (10.4-13.6); P < 0.01]. Abdominal subcutaneous fat remained unchanged. However, no changes were found in SI [Wk0: 4.7 (mU/l)(-1) min(-1) (3.1-8.8); Wk2: 5.3 (mU/l)(-1) min(-1) (4.5-7.2); P = 0.59] or SICLAMP [Wk0: 42.0 × 10(-4) dl kg(-1) min(-1) (mU/l)(-1) (41.0-51.0); Wk2: 40.0 × 10(-4) dl kg(-1) min(-1) (mU/l) (-1) (34.0-52.0); P = 0.67].
Conclusions: Despite a selective increase in visceral adiposity in dogs, insulin sensitivity in vivo did not change, which argues against the concept that accumulation of visceral adipose tissue contributes to insulin resistance.
© 2014 The Obesity Society.