The α1,6-fucosyltransferase gene (fut8) from the Sf9 lepidopteran insect cell line: insights into fut8 evolution

PLoS One. 2014 Oct 21;9(10):e110422. doi: 10.1371/journal.pone.0110422. eCollection 2014.

Abstract

The core alpha1,6-fucosyltransferase (FUT8) catalyzes the transfer of a fucosyl moiety from GDP-fucose to the innermost asparagine-linked N-acetylglucosamine residue of glycoproteins. In mammals, this glycosylation has an important function in many fundamental biological processes and although no essential role has been demonstrated yet in all animals, FUT8 amino acid (aa) sequence and FUT8 activity are very well conserved throughout the animal kingdom. We have cloned the cDNA and the complete gene encoding the FUT8 in the Sf9 (Spodoptera frugiperda) lepidopteran cell line. As in most animal genomes, fut8 is a single-copy gene organized in different exons. The open reading frame contains 12 exons, a characteristic that seems to be shared by all lepidopteran fut8 genes. We chose to study the gene structure as a way to characterize the evolutionary relationships of the fut8 genes in metazoans. Analysis of the intron-exon organization in 56 fut8 orthologs allowed us to propose a model for fut8 evolution in metazoans. The presence of a highly variable number of exons in metazoan fut8 genes suggests a complex evolutionary history with many intron gain and loss events, particularly in arthropods, but not in chordata. Moreover, despite the high conservation of lepidoptera FUT8 sequences also in vertebrates and hymenoptera, the exon-intron organization of hymenoptera fut8 genes is order-specific with no shared exons. This feature suggests that the observed intron losses and gains may be linked to evolutionary innovations, such as the appearance of new orders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Biological Evolution*
  • Cloning, Molecular
  • Exons
  • Fucosyltransferases / classification
  • Fucosyltransferases / genetics*
  • Fucosyltransferases / metabolism
  • Genome
  • Insect Proteins / classification
  • Insect Proteins / genetics*
  • Insect Proteins / metabolism
  • Insecta / genetics
  • Molecular Sequence Data
  • Open Reading Frames
  • Phylogeny
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Sf9 Cells
  • Spodoptera / genetics

Substances

  • Insect Proteins
  • Recombinant Proteins
  • Fucosyltransferases

Grants and funding

This work was supported by Centre National de la Recherche Scientifique to MD-C, AH-L, FM, MLV, Institut National de la Recherche Agronomique to PC, SJ, AO, Laboratoire Français du Fractionnement et des Biotechnologies de Lille to BC, and PPF Bioinformatique Lille1 to AH-L. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.