Fasudil inhibits prostate cancer-induced angiogenesis in vitro

Oncol Rep. 2014 Dec;32(6):2795-802. doi: 10.3892/or.2014.3491. Epub 2014 Sep 17.

Abstract

Inhibition of angiogenesis is an important therapeutic strategy for advanced stage prostate cancer (PCa). RhoA/Rho-associated protein kinases (ROCK) are key regulators of the cytoskeleton and have been implicated in PCa angiogenesis. We investigated the anti-angiogenic effects of fasudil, a ROCK inhibitor, on PCa-induced angiogenesis in vitro. Proliferation of PCa-conditioned human umbilical vein endothelial cells (HUVECs) was assessed using a bromodeoxyuridine (BrdU) assay, and migration was assessed with a wound healing assay. In vitro angiogenesis of PCa-conditioned HUVECs was evaluated by tube formation and a spheroid sprouting assay. Fasudil inhibited PCa-induced endothelial cell proliferation at a concentration of 100 µM, and also decreased PCa-induced endothelial cell migration at a concentration of 30 µM. In the in vitro angiogenesis assay, fasudil exerted a more significant effect. Tube formation was significantly inhibited at fasudil concentrations exceeding 3 µM, and spheroid sprouts were significantly thinner and shorter (at fasudil concentrations of 10 and 30 µM, respectively). Western blotting results showed that expression of phosphorylated myosin phosphatase target subunit 1 (MYPT-1) was significantly lower after fasudil treatment, confirming that fasudil inhibited ROCK activity in these model systems. These data suggest that fasudil may be a useful anti-angiogenic agent for PCa.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / administration & dosage
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / analogs & derivatives*
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Gene Expression Regulation, Neoplastic / drug effects
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Male
  • Myosin-Light-Chain Phosphatase / biosynthesis
  • Neovascularization, Pathologic / drug therapy*
  • Neovascularization, Pathologic / genetics
  • Neovascularization, Pathologic / pathology
  • Prostatic Neoplasms / drug therapy*
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / pathology
  • Protein Kinase Inhibitors / administration & dosage
  • rho-Associated Kinases / antagonists & inhibitors
  • rho-Associated Kinases / genetics*

Substances

  • Protein Kinase Inhibitors
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
  • rho-Associated Kinases
  • Myosin-Light-Chain Phosphatase
  • PPP1R12A protein, human
  • fasudil