Bacteroidales are the most abundant Gram-negative bacteria of the human intestinal microbiota comprising more than half of the bacteria in many individuals. Some of the factors that these bacteria use to establish and maintain themselves in this ecosystem are beginning to be identified. However, ecological competition, especially interference competition where one organism directly harms another, is largely unexplored. To begin to understand the relevance of this ecological principle as it applies to these abundant gut bacteria and factors that may promote such competition, we screened Bacteroides fragilis for the production of antimicrobial molecules. We found that the production of extracellularly secreted antimicrobial molecules is widespread in this species. The first identified molecule, described in this manuscript, contains a membrane attack complex/perforin (MACPF) domain present in host immune molecules that kill bacteria and virally infected cells by pore formation, and mutations affecting key residues of this domain abrogated its activity. This antimicrobial molecule, termed BSAP-1, is secreted from the cell in outer membrane vesicles and no additional proteins are required for its secretion, processing or immunity of the producing cell. This study provides the first insight into secreted molecules that promote competitive interference among Bacteroidales strains of the human gut.
© 2014 John Wiley & Sons Ltd.