Size limits of self-assembled colloidal structures made using specific interactions

Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15918-23. doi: 10.1073/pnas.1411765111. Epub 2014 Oct 27.

Abstract

We establish size limitations for assembling structures of controlled size and shape out of colloidal particles with short-ranged interactions. Through simulations we show that structures with highly variable shapes made out of dozens of particles can form with high yield, as long as each particle in the structure binds only to the particles in their local environment. To understand this, we identify the excited states that compete with the ground-state structure and demonstrate that these excited states have a completely topological characterization, valid when the interparticle interactions are short-ranged. This allows complete enumeration of the energy landscape and gives bounds on how large a colloidal structure can assemble with high yield. For large structures the yield can be significant, even with hundreds of particles.

Keywords: DNA-coated particles; assembly; local minima; short-ranged interactions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.