Differential ERK1/2 Signaling and Hypertrophic Response to Endothelin-1 in Cardiomyocytes from SHR and Wistar-Kyoto Rats: A Potential Target for Combination Therapy of Hypertension

Curr Vasc Pharmacol. 2015;13(4):467-74. doi: 10.2174/1570161112666141014150007.

Abstract

Extracellular signal regulated kinase½ (ERK1/2) signaling is critical to endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. This study was to investigate ERK1/2 signaling and hypertrophic response to ET-1 stimulation in cardiomyocytes (CMs) from spontaneous hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Primary neonatal SHR and WKY CMs were exposed to ET-1 for up to 24 hrs. Minimal basal ERK1/2 phosphorylation was present in WKY CMs, while a significant baseline ERK1/2 phosphorylation was observed in SHR CMs. ET-1 induced a time- and dose-dependent increase in ERK1/2 phosphorylation in both SHR and WKY CMs. However, ET-1-induced ERK1/2 activation occurred much earlier with significantly higher peak phosphorylation level, and stayed elevated for longer duration in SHR CMs than that in WKY CMs. ET-1-induced hypertrophic response was more prominent in SHR CMs than that in WKY CMs as reflected by increased cell surface area, intracellular actin density, and protein synthesis. Pre-treatment with ERK1/2 phosphorylation inhibitor PD98059 completely prevented ET-1-induced ERK1/2 phosphorylation and increases in cell surface area and protein synthesis in SHR and WKY CMs. The specific PI3 kinase inhibitor LY294002 blocked ET-1-induced Akt and ERK1/2 phosphorylation, and protein synthesis in CMs. These data indicated that ERK1/2 signaling was differentially enhanced in CMs, and was associated with increased cardiac hypertrophic response to ET-1 in SHR. ET-1-induced ERK1/2 activation and cardiac hypertrophy appeared to be mediated via PI3 kinase/Akt signaling in SHR and WKY. The differential ERK1/2 activation in SHR CMs by ET-1 might represent a potential target for combination therapy of hypertension.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Cardiomegaly / metabolism*
  • Cardiomegaly / pathology
  • Cell Culture Techniques
  • Cell Size / drug effects
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Drug Therapy, Combination
  • Endothelin-1 / metabolism
  • Endothelin-1 / pharmacology*
  • Hypertension / drug therapy*
  • Hypertension / metabolism
  • Hypertension / pathology
  • Immunohistochemistry
  • MAP Kinase Signaling System / drug effects*
  • Myocytes, Cardiac / drug effects*
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Phosphoinositide-3 Kinase Inhibitors
  • Phosphorylation
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Rats, Inbred SHR
  • Rats, Inbred WKY

Substances

  • Endothelin-1
  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt