Artificial guidance channels containing Schwann cells can promote the regeneration of injured peripheral nerve over long distances. However, primary Schwann cells are not suitable for autotransplantation. Under specific conditions, skin-derived progenitors can be induced to differentiate into Schwann cells. Therefore, adult rat dorsal skin (dermis)-derived progenitors were isolated and induced to differentiate with DMEM/F12 containing B27, neuregulin 1, and forskolin. Immunofluorescence staining and reverse transcription polymerase chain reaction (RT-PCR) confirmed that the resultant cells were indeed Schwann cells. Artificial guidance channels containing skin-derived progenitors, Schwann cells originating from skin-derived progenitors, or primary Schwann cells were used to bridge 5 mm sciatic nerve defects. Schwann cells originating from skin-derived progenitors significantly promoted sciatic nerve axonal regeneration. The significant recovery of injured rat sciatic nerve function after the transplantation of Schwann cells originating from skin-derived progenitors was confirmed by electromyogram. The therapeutic effect of Schwann cells originating from skin-derived progenitors was better than that of skin-derived progenitors. These findings indicate that Schwann cells originating from skin-derived precursors can promote peripheral nerve regeneration in rats.
Keywords: NSFC grant; Schwann cells; cell transplantation; nerve regeneration; neural regeneration; peripheral nerve injury; skin-derived precursors.