Introduction: Propolis is a resinous natural substance collected by honeybees from different plant sources. Due to the presence of various phytochemicals, this bee-product exhibits numerous biological activities, including anti-bacterial, anti-viral, anti-inflammatory, anti-oxidant, immunostimulating and anti-tumour effects. As the chemical composition and biological activity of propolis depend on its botanical and geographical origin, searching for new bioactive substances in various types of propolis from unexplored regions is of great importance.
Objective: The aim of this study is the evaluation of the phenolic profile of poplar propolis samples in order to characterise Serbian propolis, to identify possible new constituents and to specify the phenolic components relevant for differentiation of poplar propolis samples into two subgroups through simultaneous analysis of poplar bud extracts.
Methods: Ethanolic extracts of propolis and poplar buds were comprehensively analysed using ultrahigh-performance liquid chromatography coupled with hybrid mass spectrometry, which combines the linear trap quadrupole and Orbitrap MS/MS mass analyser together with chemometric methods.
Results: Extensive fingerprint analysis of Serbian propolis was achieved for the first time. Seventy-five phenolic compounds were detected. Eight of them were identified in propolis for the first time. Pattern-recognition methods applied to the content of ten quantified phenolics verified the existence of two subgroups of propolis, with galangin, chrysin and pinocembrin as the most influential distinguishing factors.
Conclusion: The phenolic composition of the analysed propolis samples confirm their affiliation to the European poplar type propolis and the existence of two subgroups according to botanical origin.
Keywords: Pattern-recognition methods; UHPLC-LTQ/Orbitrap/MS/MS; phenolic profile; poplar type propolis.
Copyright © 2014 John Wiley & Sons, Ltd.