The ues of corn silk modified with diluted nitric acid (HNO3-MCS) as a novel biosorbent has been established for solid-phase extraction of Cr(III) and chromium speciation in water samples. The functional groups of the HNO3-MCS surface are favorable for the adsorption of Cr(III). Effective extraction conditions were optimized in both batch and column methods. At pH 3.0 - 6.0, a discrimination of Cr(III) and Cr(VI) is achieved on the HNO3-MCS surface. Cr(III) ions are retained onto the HNO3-MCS surface, however, the adsorption of Cr(VI) is negligible under the same conditions. The adsorption isotherm of HNO3-MCS for Cr(III) has been demonstrated in accordance with a linear form of the Langmuir equation, and the maximum adsorption capacity is 35.21 mg g(-1). The well fitted linear regression of the pseudo-second order model showed the indication of a chemisorption mechanism for the entire concentration range. Thermodynamic studies have shown that the adsorption process is spontaneous and endothermic. The adsorbed Cr(III) was quantitatively eluted by a nitric acid solution with detection by flame atomic absorption spectrometry (FAAS). With a sample volume of 30 mL, a detection limit (3σ) of 0.85 μg L(-1) and a precision of 2.0% RSD at the 40 μg L(-1) level were achieved. The concentration of Cr(III) could be accurately quantified within a linear range of 3 - 200 μg L(-1). After Cr(VI) has been reduced to Cr(III) with hydroxylamine hydrochloride, the total amount of chromium was obtained, and the content of Cr(VI) was given by subtraction. The procedure was validated by analyzing chromium in a certified reference material (GBW (E) 080039). It was also successfully applied for the speciation of chromium in wastewater samples.