Motivation: Currently, 25% of proteins annotated in Pfam have their function unknown. One way of predicting proteins function is by looking at their active site, which has two main parts: the catalytic site and the substrate binding site. The active site is more conserved than the other residues of the protein and can be a rich source of information for protein function prediction. This article presents a new heuristic method, named genetic active site search (GASS), which searches for given active site 3D templates in unknown proteins. The method can perform non-exact amino acid matches (conservative mutations), is able to find amino acids in different chains and does not impose any restrictions on the active site size.
Results: GASS results were compared with those catalogued in the catalytic site atlas (CSA) in four different datasets and compared with two other methods: amino acid pattern search for substructures and motif and catalytic site identification. The results show GASS can correctly identify >90% of the templates searched. Experiments were also run using data from the substrate binding sites prediction competition CASP 10, and GASS is ranked fourth among the 18 methods considered.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].