Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics

Angew Chem Int Ed Engl. 2015 Jan 7;54(2):541-5. doi: 10.1002/anie.201409635. Epub 2014 Nov 13.

Abstract

Zeolites are highly important heterogeneous catalysts. Besides Brønsted SiOHAl acid sites, also framework AlFR Lewis acid sites are often found in their H-forms. The formation of AlFR Lewis sites in zeolites is a key issue regarding their selectivity in acid-catalyzed reactions. The local structures of AlFR Lewis sites in dehydrated zeolites and their precursors--"perturbed" AlFR atoms in hydrated zeolites--were studied by high-resolution MAS NMR and FTIR spectroscopy and DFT/MM calculations. Perturbed framework Al atoms correspond to (SiO)3AlOH groups and are characterized by a broad (27)Al NMR resonance (δi = 59-62 ppm, CQ = 5 MHz, and η = 0.3-0.4) with a shoulder at 40 ppm in the (27)Al MAS NMR spectrum. Dehydroxylation of (SiO)3AlOH occurs at mild temperatures and leads to the formation of AlFR Lewis sites tricoordinated to the zeolite framework. Al atoms of these (SiO)3Al Lewis sites exhibit an extremely broad (27)Al NMR resonance (δi ≈ 67 ppm, CQ ≈ 20 MHz, and η ≈ 0.1).

Keywords: Lewis acids; NMR spectroscopy; aluminum; density functional calculations; zeolites.