Background: Treatment with tolerogenic dendritic cells (TolDC) is a promising, cell-based strategy to regulate autoimmune diseases such as multiple sclerosis (MS) in an antigen-specific way. This technique involves the use of TolDC from MS patients cultured in the presence of vitamin D(3) (VitD3) and pulsed with myelin peptides to induce a stable hyporesponsiveness in myelin-specific autologous T cells.
Aim: The purpose of this study was to analyze the in vivo effect of VitD3-TolDC treatment on experimental autoimmune encephalomyelitis, an animal model of MS.
Methods: Bone marrow-derived TolDC cultured in the presence of VitD3 and pulsed with peptide 40-55 of the myelin oligodendrocyte glycoprotein (MOG(40-55)) were administrated preventively, preclinically, and therapeutically to EAE-induced mice.
Results: We found that VitD3-TolDC-MOG treatment showed a beneficial effect, not only decreasing the incidence of the disease but also reducing the severity of the clinical signs mediated by induction of regulatory T cells (Treg), as well as IL-10 production and reduction of Ag-specific lymphoproliferation. Our results support VitD3-TolDC-peptide(s) treatment as a potential strategy to restore tolerance in autoimmune diseases such as MS.
Keywords: Dendritic cells; Experimental autoimmune encephalomyelitis; Regulatory T cells; Tolerance; Vitamin D3.
© 2014 John Wiley & Sons Ltd.