Objective: Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, approved for the treatment of type-2 diabetes mellitus (T2DM), is metabolized by uridine diphosphate-glucuronosyltransferases (UGT) 1A9 and UGT2B4, and is a substrate of P-glycoprotein (P-gp). Canagliflozin exposures may be affected by coadministration of drugs that induce (e.g., rifampin for UGT) or inhibit (e.g. probenecid for UGT; cyclosporine A for P-gp) these pathways. The primary objective of these three independent studies (single-center, open-label, fixed-sequence) was to evaluate the effects of rifampin (study 1), probenecid (study 2), and cyclosporine A (study 3) on the pharmacokinetics of canagliflozin in healthy participants.
Methods: Participants received; in study 1: canagliflozin 300 mg (days 1 and 10), rifampin 600 mg (days 4-12); study 2: canagliflozin 300 mg (days 1-17), probenecid 500 mg twice daily (days 15-17); and study 3: canagliflozin 300 mg (days 1-8), cyclosporine A 400 mg (day 8). Pharmacokinetics were assessed at prespecified intervals on days 1 and 10 (study 1); on days 14 and 17 (study 2), and on days 2-8 (study 3).
Results: Rifampin decreased the maximum plasma canagliflozin concentration (Cmax) by 28% and its area under the curve (AUC) by 51%. Probenecid increased the Cmax by 13% and the AUC by 21%. Cyclosporine A increased the AUC by 23% but did not affect the Cmax.
Conclusion: Coadministration of canagliflozin with rifampin, probenecid, and cyclosporine A was well-tolerated. No clinically meaningful interactions were observed for probenecid or cyclosporine A, while rifampin coadministration modestly reduced canagliflozin plasma concentrations and could necessitate an appropriate monitoring of glycemic control.