External beam radiation therapy is a commonly utilized treatment modality in the management of head and neck cancer. Given the close proximity of disease to critical normal tissues and structures, the delivery of external beam radiation therapy can result in severe acute and late toxicities, even when delivered with advanced photon-based techniques, such as intensity-modulated radiation therapy. The unique physical characteristics of protons make it a promising option in the treatment of advanced head and neck cancer, with the potential to improve sparing of normal tissues and/or safely escalate radiation doses. Clinical implementation will require the continued development of advanced techniques such as intensity-modulated proton therapy, using pencil beam scanning, as well as rigorous methods of quality assurance and adaptive techniques to accurately adjust to changes in anatomy due to disease response. Ultimately, the widespread adaptation and implementation of proton therapy for head and neck cancer will require direct, prospective comparisons to standard techniques such as intensity-modulated radiation therapy, with a focus on measures such as toxicity, disease control, and quality of life.