In the past 50 years there have been considerable efforts to identify the cellular receptor of hepatitis B virus (HBV). Recently, in vitro evidence from several groups has shown that the sodium-taurocholate cotransporting polypeptide (NTCP, which is encoded by SLC10A1 and transports bile acids into hepatic cells in enterohepatic recirculation) is a strong candidate. In particular, in vitro the p.Ser267Phe variation of SLC10A1 results in loss of HBV receptor function. We tested the role of NTCP as a receptor for HBV in chronic hepatitis B patients using a genetic association study. We selected SLC10A1 variants from 189 exomes. We used Sanger sequencing to follow up the association of the various SLC10A1 variants in a Han Chinese cohort of 1899 chronic hepatitis B patients and 1828 healthy controls. We further investigated the potential impact of the p.Ser267Phe variant on NTCP function using structural analysis. The p.Ser267Phe variant was associated with healthy status (P = 5.7 × 10(-23) , odds ratio = 0.36) irrespective of hepatitis B virus surface antibody status (P = 6.2 × 10(-21) and 1.5 × 10(-10) , respectively, when the cases were compared with hepatitis B virus surface antibody-positive and -negative controls). The variation was also associated with a lower incidence of acute-on-chronic liver failure (P = 0.007). The estimated heritability explained by this single variation was ∼3.2%. The population prevented fraction was around 13.0% among the southern Chinese. Our structural modeling showed that the p.Ser267Phe variant might interfere with ligand binding, thereby preventing HBV from cellular entry.
Conclusion: The p.Ser267Phe NTCP variant is significantly associated with resistance to chronic hepatitis B and a lower incidence of acute-on-chronic liver failure. Our results support that NTCP is a cellular receptor for HBV in human infection.
© 2014 by the American Association for the Study of Liver Diseases.