Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity

Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17462-7. doi: 10.1073/pnas.1405981111. Epub 2014 Nov 24.

Abstract

Many antiviral and anticancer drugs are nucleoside analogs that target polymerases and cause DNA chain termination. Interestingly, ganciclovir (GCV), the first line of therapy for human cytomegalovirus (HCMV) infections, induces chain termination despite containing the equivalent of a 3'-hydroxyl group. Certain HCMV GCV resistance (GCV(r)) mutations, including ones associated with treatment failures, result in substitutions in the 3'-5' exonuclease (Exo) domain of the catalytic subunit of the viral DNA polymerase (Pol). To investigate how these mutations confer resistance, we overexpressed and purified wild-type (WT) HCMV Pol and three GCV(r) Exo mutants. Kinetic studies provided little support for resistance being due to effects on Pol binding or incorporation of GCV-triphosphate. The mutants were defective for Exo activity on all primer templates tested, including those with primers terminating with GCV, arguing against the mutations increasing excision of the incorporated drug. However, although the WT enzyme terminated DNA synthesis after incorporation of GCV-triphosphate and an additional nucleotide (N+1), the Exo mutants could efficiently synthesize DNA to the end of such primer templates. Notably, the Exo activity of WT Pol rapidly and efficiently degraded N+2 primer templates to N+1 products that were not further degraded. On N+1 primer templates, WT Pol, much more than the Exo mutants, converted the incoming deoxynucleoside triphosphate to its monophosphate, indicative of rapid addition and removal of incorporated nucleotides ("idling"). These results explain how GCV induces chain termination and elucidate a previously unidentified mechanism of antiviral drug resistance.

Keywords: 3′–5′ exonuclease; DNA polymerase; drug resistance; ganciclovir; human cytomegalovirus.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacokinetics
  • Base Sequence
  • Catalytic Domain
  • Cytomegalovirus / enzymology
  • DNA, Viral / biosynthesis
  • DNA-Directed DNA Polymerase / chemistry
  • DNA-Directed DNA Polymerase / genetics*
  • Drug Resistance, Viral*
  • Exonucleases / genetics
  • Exonucleases / metabolism*
  • Ganciclovir / chemistry*
  • Ganciclovir / pharmacokinetics
  • Mutation*
  • Viral Proteins / chemistry

Substances

  • Antiviral Agents
  • DNA, Viral
  • Viral Proteins
  • DNA-Directed DNA Polymerase
  • Exonucleases
  • Ganciclovir