Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis

PLoS One. 2014 Nov 25;9(11):e113718. doi: 10.1371/journal.pone.0113718. eCollection 2014.

Abstract

Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic modification to improve plant resistance to multiple stresses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics*
  • Arabidopsis / metabolism
  • Arabidopsis / microbiology
  • Botrytis / pathogenicity*
  • Droughts*
  • Gene Expression Regulation, Plant
  • Mycoses / genetics*
  • Oxidative Stress*
  • Transcriptome*

Grants and funding

This project was funded by the UAEU (United Arab Emirates University) [COS/IRG-05/14] and the Khalifa Center for Biotechnology and Genetic Engineering-UAEU [KCGEB-2-2013] to SAQ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.