Objective: We investigated the impact of detailed body composition on aerobic fitness to determine whether regional components of fat mass have independent effects on VO2submax , and whether VO2submax and detailed body composition independently explain variation in REE.
Methods: 71 healthy adults (80% female, 20% male, BMI 28.2-43.8 kg/m(2) ) were investigated. Body composition was measured by the four-compartment model together with whole body magnetic resonance imaging (MRI) to assess high and low metabolic rate organs and regional fat depots. VO2submax was estimated at 75% of predicted maximum heart rate.
Results: There was a strong association between VO2submax and FFM and all organ masses except for heart. Skeletal muscle mass accounted for 34.8% of the variance in VO2submax . In addition, subcutaneous adipose tissue (SAT) of extremities explained additional 14.4%. FFM and FM explained 71.3% of the variance in REE. Including the components of FFM and FM, the explained variance in REE increased by about 5.8%; skeletal muscle mass explained 70.0% of the variance in REE and kidney and liver masses explained additional 7.1%. VO2submax correlated with REE. Taking into account body composition, VO2submax did not add to the variance in REE.
Conclusion: FFM is a determinant of both VO2submax and REE. Modeling either REE or VO2submax from individual components of FFM, about 77.1% of variance in REE (by muscle, liver and kidneys mass) and 34.8% of variance in VO2submax (by skeletal muscle mass) could be explained. FM explained additional variance in REE, whereas SAT of extremities added to the variance in VO2submax only.
© 2014 Wiley Periodicals, Inc.