Background: Only a subset of patients who enter stage 3 chronic kidney disease (CKD) progress to stage 4. Identifying which patients entering stage 3 are most likely to progress could improve outcomes, by allowing more appropriate referrals for specialist care, and spare those unlikely to progress the adverse effects and costliness of an unnecessarily aggressive approach. We hypothesized that compared to non-progressors, patients who enter stage 3 CKD and ultimately progress have experienced greater loss of renal function, manifested by impairment of metabolic function (anemia, worsening acidosis and mineral abnormalities), than is reflected in the eGFR at entry to stage 3. The purpose of this case-controlled study was to design a prediction model for CKD progression using laboratory values reflecting metabolic status.
Methods: Using data extracted from the electronic health record (EHR), two cohorts of patients in stage 3 were identified: progressors (eGFR declined >3 ml/min/1.73 m2/year; n=117) and non-progressors (eGFR declined <1 ml/min/1.713 m2; n=364). Initial laboratory values recorded a year before to a year after the time of entry to stage 3, reflecting metabolic complications (hemoglobin, bicarbonate, calcium, phosphorous, and albumin) were obtained. Average values in progressors and non-progressors were compared. Classification algorithms (Naïve Bayes and Logistic Regression) were used to develop prediction models of progression based on the initial lab data.
Results: At the entry to stage 3 CKD, hemoglobin, bicarbonate, calcium, and albumin values were significantly lower and phosphate values significantly higher in progressors compared to non-progressors even though initial eGFR values were similar. The differences were sufficiently large that a prediction model of progression could be developed based on these values. Post-test probability of progression in patients classified as progressors or non-progressors were 81% (73% - 86%) and 17% (13% - 23%), respectively.
Conclusions: Our studies demonstrate that patients who enter stage 3 and ultimately progress to stage 4 manifest a greater degree of metabolic complications than those who remain stable at the onset of stage 3 when eGFR values are equivalent. Lab values (hemoglobin, bicarbonate, phosphorous, calcium and albumin) are sufficiently different between the two cohorts that a reasonably accurate predictive model can be developed.