The preoperative grading of gliomas, which is critical for guiding therapeutic strategies, remains unsatisfactory. We aimed to retrospectively assess the efficacy of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) in the grading of gliomas. Forty-two newly diagnosed glioma patients underwent conventional MR imaging, DWI, and contrast-enhanced MR imaging. Parameters of apparent diffusion coefficient (ADC), slow diffusion coefficient (D), fast diffusion coefficient (D*), and fraction of fast ADC (f) were generated. They were tested for differences between low- and high-grade gliomas based on one-way ANOVA. Receiver-operating characteristic (ROC) analyses were conducted to determine the optimal thresholds as well as the sensitivity and specificity for grading. ADC, D, and f were higher in the low-grade gliomas, whereas D* tended to be lower (all P<0.05). The AUC, sensitivity, specificity and the cutoff value, respectively, for differentiating low- from high-grade gliomas for ADC, D and f, and differentiating high- from low-grade gliomas for D* were as follows: ADC, 0.926, 100%, 82.8%, and 0.7 × 10(-3) mm(2)/sec; D, 0.942, 92.3%, 86.2%, and 0.623 × 10(-3) mm(2)/sec; f, 0.902, 92.3%, 86.2%, and 35.3%; D*, 0.798, 79.3%, 84.6%, and 0.303 × 10(-3) mm(2)/sec. The IVIM DWI demonstrates efficacy in differentiating the low- from high-grade gliomas.