Organic and hybrid organic-inorganic systems are promising candidates for low cost photovoltaics. Recently, perovskite-based systems have been attracting a large amount of research attention, where the highest performing devices employ a small molecule (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene) (Spiro-OMeTAD) hole transporter. Here, we demonstrate the production of single-walled carbon nanotube (SWNT)/single molecule nanostructures using a simple solution processing technique for effective and strong binding of Spiro-OMeTAD to individual polymer-wrapped SWNTs. These small molecules bind very strongly, which causes both large mechanical strain of the nanotubes and also improves the separation of individual SWNTs, thus improving the nanotube photoluminescence quantum efficiency by 1 order of magnitude compared to simple polymer-nanotube nanohybrids. Using absorption and photoluminescence measurements, we show that there is a dramatic variation in the electronic properties of the polymer-NT nanocomposites due to the band alignment formed with Spiro-OMeTAD. These self-assembled nanocomposites offer the potential for integration into high performance optoelectronic such as photovoltaic cells and light emission devices.
Keywords: Spiro-OMeTAD; carbon nanotube; conjugated polymer; organic photovoltaics; polymer wrapping.