Objectives: Nuclear magnetic resonance (NMR) spectroscopy has been successfully applied to the measurement of high-density lipoprotein (HDL) particles, providing particle concentrations for total HDL particle number (HDL-P), HDL subclasses (small, medium, large) and weighted, average HDL size for many years. Key clinical studies have demonstrated that NMR-measured HDL-P was more strongly associated with measures of coronary artery disease and a better predictor of incident cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C). Recently, an NMR-based clinical analyzer, the Vantera(®), was developed to allow lipoprotein measurements to be performed in the routine, clinical laboratory setting. The aim of this study was to evaluate and report the performance characteristics for HDL-P quantified on the Vantera(®) Clinical Analyzer.
Design and methods: Assay performance was evaluated according to Clinical and Laboratory Standards Institute (CLSI) guidelines. In order to ensure that quantification of HDL-P on the Vantera(®) Clinical Analyzer was similar to the well-characterized HDL-P assay on the NMR profiler, a method comparison was performed.
Results: The within-run and within-lab imprecision ranged from 2.0% to 3.9%. Linearity was established within the range of 10.0 to 65.0 μmol/L. The reference intervals were different between men (22.0 to 46.0 μmol/L) and women (26.7 to 52.9 μmol/L). HDL-P concentrations between two NMR platforms, Vantera(®) Clinical Analyzer and NMR Profiler, demonstrated excellent correlation (R(2) = 0.98).
Conclusions: The performance characteristics, as well as the primary tube sampling procedure for specimen analysis on the Vantera(®) Clinical Analyzer, suggest that the HDL-P assay is suitable for routine clinical applications.
Keywords: Cardiovascular disease; High-density lipoprotein; Lipoprotein particle analysis; NMR spectroscopy.
Copyright © 2014. Published by Elsevier Inc.