Although little studied in natural populations, the persistence of immunoglobulins may dramatically affect the dynamics of immunity and the ecology and evolution of host-pathogen interactions involving vertebrate hosts. By means of a multiple-year vaccination design against Newcastle disease virus, we experimentally addressed whether levels of specific antibodies can persist over several years in females of a long-lived procellariiform seabird-Cory's shearwater-and whether maternal antibodies against that antigen could persist over a long period in offspring several years after the mother was exposed. We found that a single vaccination led to high levels of antibodies for several years and that the females transmitted antibodies to their offspring that persisted for several weeks after hatching even 5 years after a single vaccination. The temporal persistence of maternally transferred antibodies in nestlings was highly dependent on the level at hatching. A second vaccination boosted efficiently the level of antibodies in females and thus their transfer to offspring. Overall, these results stress the need to consider the temporal dynamics of immune responses if we are to understand the evolutionary ecology of host-parasite interactions and trade-offs between immunity and other life-history characteristics, in particular in long-lived species. They also have strong implications for conservation when vaccination may be used in natural populations facing disease threats.